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Szeged and GA, indices of Suzuki's Bi-branched
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Let G be a simple connected graph. If e = uv is an edge of G and ny(e) is the number of vertices closer to u than v and n,(e)
is the number of vertices closer to v than u then the Szeged and second GA indices of G are defined as Sz(G) = Ze-wy

nu(e)ny(e) and GA,(G) = ZQZUVZM/[nU(e) + ny(e)]. In this paper, the Szeged and GA; indices of two types of

dendrimers are computed for the first time.
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1. Introduction

Dendrimers are large and complex molecules with
very well-defined chemical structures. They consist of
three major architectural components: core, branches and
end groups. Nanostar dendrimers are part of a new group
of macromolecules. The topological study of these
macromolecules is the subject of some recent papers [1,2].

Let G be a connected simple molecular graph with
vertex and edge sets V(G) and E(G), respectively. As
usual, the distance between the vertices u and v of G is
denoted by dg(u,v) (or d(u,v) for short) and it is defined as
the number of edges in a minimal path connecting vertices
uandv [3].

The Szeged and second Geometric-Arithmetic indices

of a graph G is defined as Sz(G) = Ze=uv[nu(e)n\,(e)]
2; 2o laN &)

and GAyG) = < [0ul®) = 0@ wnere n,(e) is

the number of vertices lying closer to u than to v and n,(e)

is defined analogously [4,5]. The mathematical properties

of these topological indices can be found in some recent
papers [6-13].

Fig. 1. The Suzuki's Bi-branched Dendrimer.

In this paper our notation is standard and taken mainly
from the standard book of graph theory. The goal of this
article is to compute the Szeged and GA, indices of two
classes of dendrimeric nanostars.

2. The Szeged index of S[n]

In this section the Szeged and GA, indices of a class
of nanostar dendrimers, S[n], are computed. If A and B are
graphs such that V(A) < V(B) and E(A) < E(B) then A is
called a subgraph of B, A < B. To compute these
topological indices, we partition the edge set of S[n] into
the classes with the same n(e) = ny(e)n,(e), where e = uv is
an edge of S[n]. We first notice that the graph S[n] can be
constructed from subgraphs isomorphic to H and the core
of S[n], see Figs. 2 and 3.
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Fig. 2. The Peace H of S[n].
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Fig. 3. The Core K of S[n].
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We now explain our method for constructing S[n]. In
the first step, we join a subgraph isomorphic to H from
vertex A to a subgraph isomorphic to K in the vertex B.
Since, K has exactly three branches, we can construct S[1]
by K and three isomorphic subgraphs. In the second step,
six subgraphs isomorphic to H join with S[1]. Finally, in
the step r, 3 x 2" subgraphs isomorphic to H are joined to
S[r-1]. Begin by a simple calculation. Clearly, Sz(K) =
3564. For computing Sz(S[1]), it is enough to consider
edges €y, €0, €03> €045 €05> €065 €075 C0g and €go in the first
step and edges ei;, €12, €13, €14, €15, €16, €17, €13 IN the
second step of our algorithm. In what follows, our
calculations are given in Table 1.

Table 1. The summation of n,(e)n,(e) for the edges
similar to e of S[1].

Types of Edges Sum Types of Edges | Sum
o1 4500 e 1764
€02 €03, €06 12096 || ez, €13, €16 4428
€05, €08 8784 s, €3 5688
€04, €07 9000 €14, €17 6552
€09 4788

By these calculations Sz(S[1]) = 57600. We now
compute the Szeged index of S[2]. To do this, we

compute.

Table 2. The summation of n,(e)n,(e) for the edges similar to e of S[2].

Types of Edges Sum Types of Edges Sum Types of Edges Sum
€1 8649 el 21960 o1 27720
€2, €23, €26 20520 €12, €13, €16 32508 €02 €03, €06 54054
€25, €28 26928 €15, €18 24336 €05, €08 38052
€24, €27 31248 €14, €17 25200 €04, €07 38700

€09 20286

By these calculations, Sz(S[2]) = 370152. We are now
ready to calculate the step n of this nanostar. In Table 3,
the values of n,(e)n,(e) for types of edges are computed.

Set Aj = {€q1, €2, €n3> €nd> €ns> En> En7s Eng> E(n-1)1)» Az =
(@2 €3> € : 1SI<n}, Az = {emips, €nig 0 1 <1<

n}, Ay = {€n-iyt €m—iy7 1 1 £1<n} and As = {ep.iy 1 2<i<
n}. Define S; to be the summation of ny(e)n,(v) over all
edges e = uv € A;. By calculations given in Table 1, one
can see that:

S1 = ((30 + 27n(n + 1)) x 1)x3(2™2 — 1) + (((30 + 27n(n + 1)) — 2) x 3)(3% x 2") + (((30 + 27n(n + 1)) — 5) x 6)(3 x 2™") +
(30 + 27n(n + 1)) — 6) x 7)(3 x 2™ + (((30 + 27n(n + 1)) — 9) x 10)(3 x 2") = 3654 x 2" + 3969n x 2" + 3969n> x 2" —

81n—81n*>—90,

Sy = %(((30 +27n(n+1)) - 20+ (A -DI8))x (21+ (1 —1)18))(3x3)

i=1
= 2295+ 4131n> +3483n2 +2187n?

S; = (30 + 27n(n + 1)) — (23+ (= 1)18)) x (24 + (i~ )I8))(3x2)

i=1
=1602n +3240n°> +2484n2 +1458n*

S4 = 3 ((30+27n(n+1))— (24 + (i— 18))x (25 + (i~ 18))(3x2)

i=1

=1602n +3402n> + 2538n2 +1458n?

Ss— nil((@o +27n(n + 1)) = (27 + (i = 1)18)) x (28 + (1 — )18))(3x 2)

i=1

+((30+27n(n +1)) - (27 + (n —1)18))x (28 + (n — )18))(3x 1)

— _630+126n +1404n% +2430n° +1458n*
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Table 1. The summation of n,(e)n,(e) for the edges similar to e of S[n].

Types of Edges

Summation of n,(e)n,(e)

€1n2-n3,€n6

€n5-5€n8

€n4,€n7

€(n-11
€(n-12:¢(n-1)6-€(n-1)3
€(n-1)5-(n-1)8
€(n-14>€(n-1)7

€(n-2)1

el ((30+27n(n + 1) x 32" 2 1)
((30+27n(n +1)) - 2)x 3)(3% x2™M)
(30 +27n(n +1)) = 5)x 6)(3x 2" *1)
(30 +27n(n +1)) - 6)x 7)(3x 21y

((30+27n(n+1))-9)x10)(3x2")
((B0+27n(n+1))—20)x21)(3x3)
((B0+27n(n+1)) —23)x24)(3x2)
((B0+27n(n+1))—24)x25)(3x2)
(((30+27n(n+1))—27)x28)(3x2)

€(n-i)2:€(n-i)6>€(n-i)3
€(n-1)5-C(n-i)8
€(n-i)4>€(n-i)7

Cn-(G+N)

(30 +27n(n + 1)) — (20 + (i— DI8))x (21 + (i — DIB))(3x 3)
((30+27n(n +1)) = (23 + (i —1)18))x (24 + (1 — 1)18))(3% 2)
(30 +27n(n +1)) — (24 + (i — 1)18)) x (25 + (i — 1)18))(3x 2)
(30 +27n(n +1)) — (27 + (i —1)18))x (28 + (i — 1)18))(3x 2)

€12,€16-€13 (((30+27n(n+1))— (20 + (n — 2)18)) x (21 + (n — 2)18))(3x 3)
e15.€3 (((30+27n(n +1)) — (23 + (n - 2)18)) x (24 + (n — 2)18))(3x 2)
€14.€17 ((30+27n(n +1)) — (24 + (n — 2)18)) x (25 + (n — 2)18))(3x 2)
el (((30+27n(n +1)) — (27 + (n — 2)18)) x (28 + (n — 2)18))(3%x 2)
€02-€06+€03 ((30+27n(n+1))— (20 + (n — DI8)(21+ (n — 1)I8)(3x3)
€05.C08 ((30+27n(n +1)) — (23 + (n — )18)(24 + (n — 1)18)(3x 2)
CourC07 ((30+27n(n +1)) — (24 + (n — 1)18)(25 + (n — 1)18)(3x 2)
ol ((30+27n(n + 1)) — (27 + (n — 1)18)(28 + (n — )18)(3x 1)

We are now ready to prove our first main result.

Theorem 1. The Szeged index of S[n] is computed as
follows:

Sz(S[n]) =720 + 5544n + 9828n2 +13203n°> + 6561n* +3969n22" +3969n2" + 36542".

Proof. By calculating S;, S,, S;, S; and Ss, one can see that Sz(S[n]) S; + S, + S; + S; + Ss. So, by an straightforward

calculation,

Sz(S[n]) = — 720+ 5544n + 982812 +13203n> +656n* +3969n22" +3969n2" +36542" .

3. The second geometric-arithmetic index of
S[n] and S'[n]

The aim of this section is to compute the second GA
index of the Suzuki's Bi-branched Dendrimer S[n] and
another dendrimer S'[n] depicted in Figs. 4, 5. Define:

A1 = {enla €n2, €n35 Cn4s Cns, Cne, Cn7, Cngs,
e(n-l)l},

Az = {€(n-ip2; €n-i3» C-irs | 1 S1<nf,
A3 = {€m-is, Cn-ps | 1 Si1<nj,
As={em-i, €ip7 | 1 Si<n},
A5 = {e(nfi)l ‘ 2<i< 1'1}.
We also define Si to be the summation of n,(e)n,(v)
over all edges e = uv € A;. By our calculations given in
Table 3, one can see that:



Szeged and GA, indices of Suzuki's Bi-branched dendrimers 2197

S =3,/i30+27n2 +27n) x (2™ 1
+9y[84+81n2 +81n)x 2" + 64/(150 + 16202 + 162n) x 2"
+6y(168 +189n +189n)x 2" +3\/i210+270n2 +270)x 2",

S = 20,28+ 27n(n+ ) - 18)(3 + 181))

i=1

S3 = %(6\/(25 +27n(n +1) - 18i)(6 + 18i)),

i=l

Sy = %(6\/(24 +27n(n +1) - 18i)(7 + 181))
i=1

Ss = nil (6\/(21 +27n(n + 1) —18i)(10 + 18i))+

i=1

3\/(21 +27n% +9n)(10 + 18n).

Theorem 2. The second GA index of S[n] is
computed as follows:

GAZ(S[n]):#[%/ 3042702 +27n)x 2™ — 1)+ 9y/(84 +81n? +81n)x 2"

[V(S[nD|

+6y[150+162n2 +162n |x 2™ +6[168+189n +189n)x 2"
2 n
+3[210+2700% +270)x 2" + 3028+ 27n(n + D - 18)( + 181))

i=1

(/@8 + 27 + - 183+ 181))

M=

+

+
M=

(64 24+ 27n(n + ) —180)(7 +181))

+ nil (6\/(21 +27n(n +1) - 18i)(10 + 18i))
i=1

+ 3J(21 +27n% +9n)(10 + 18n)}

Proof. From the partition of E(S[n]) given above, one can
see that
GAx(S[n]) =
&

GGG = 32 = 95 = 34 = 53)

We now apply MAPLE to simplify the equations.

In the end of this paper, we consider a new type of
dendrimers denoted by S'[n], Figs. 4 and 5. By a similar
argument as in Theorem 2, one can prove the following
theorem:

ik

Fig. 4. The Core K of S'[n].

43

Fig. 5. The Molecular Graph of S'[n].

Theorem 3. The second GA index of S'[n] is
computed as follows:

GAy(S[n]) = \/ (((3x(2““ —D)—2x (2 —I)x (2! 71))><2“*i :

6 n
V(G \%
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