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Let G be a simple connected graph. If e = uv is an edge of G and nu(e) is the number of vertices closer to u than v and nv(e) 
is the number of vertices closer to v than u then the Szeged and second GA indices of G are defined as Sz(G) = Σe=uv 

nu(e)nv(e) and GA2(G) = Σe=uv2 /[nu(e) + nv(e)]. In this paper, the Szeged and GA2 indices of two types of 
dendrimers are computed for the first time. 
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1. Introduction 
 
Dendrimers are large and complex molecules with 

very well-defined chemical structures. They consist of 
three major architectural components: core, branches and 
end groups. Nanostar dendrimers are part of a new group 
of macromolecules. The topological study of these 
macromolecules is the subject of some recent papers [1,2].  

Let G be a connected simple molecular graph with 
vertex and edge sets V(G) and E(G), respectively. As 
usual, the distance between the vertices u and v of G is 
denoted by dG(u,v) (or d(u,v) for short) and it is defined as 
the number of edges in a minimal path connecting vertices 
u and v [3].  

The Szeged and second Geometric-Arithmetic indices 
of a graph G is defined as Sz(G) = Σe=uv[nu(e)nv(e)] 

and GA2(G) = , where nu(e) is 
the number of vertices lying closer to u than to v and nv(e) 
is defined analogously [4,5]. The mathematical properties 
of these topological indices can be found in some recent 
papers [6-13]. 

 

 

Fig. 1. The Suzuki's Bi-branched Dendrimer. 

In this paper our notation is standard and taken mainly 
from the standard book of graph theory. The goal of this 
article is to compute the Szeged and GA2 indices of two 
classes of dendrimeric nanostars.  

 
2. The Szeged index of S[n] 
 
In this section the Szeged and GA2 indices of a class 

of nanostar dendrimers, S[n], are computed. If A and B are 
graphs such that V(A) ⊆ V(B) and E(A) ⊆ E(B) then A is 
called a subgraph of B, A ≤ B. To compute these 
topological indices, we partition the edge set of S[n] into 
the classes with the same n(e) = nu(e)nv(e), where e = uv is 
an edge of S[n]. We first notice that the graph S[n] can be 
constructed from subgraphs isomorphic to H and the core 
of S[n], see Figs. 2 and 3. 

 

 
 

Fig. 2. The Peace H of S[n]. 
 

 
Fig. 3. The Core K of S[n]. 
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We now explain our method for constructing S[n]. In 
the first step, we join a subgraph isomorphic to H from 
vertex A to a subgraph isomorphic to K in the vertex B. 
Since, K has exactly three branches, we can construct S[1] 
by K and three isomorphic subgraphs. In the second step, 
six subgraphs isomorphic to H join with S[1]. Finally, in 
the step r, 3 × 2r subgraphs isomorphic to H are joined to 
S[r-1]. Begin by a simple calculation. Clearly, Sz(K) = 
3564. For computing Sz(S[1]), it is enough to consider 
edges  e01, e02, e03, e04, e05, e06, e07, e08 and e09 in the first 
step and edges  e11, e12, e13, e14, e15, e16, e17, e18 in the 
second step of our algorithm. In what follows, our 
calculations are given in Table 1. 

 

 

 

Table 1. The summation of nu(e)nv(e) for the edges 
 similar to e of S[1]. 

 

Types of Edges Sum Types of Edges Sum 

e01 
e02 e03, e06 
e05, e08 
e04, e07 
e09 

4500 
12096 
8784 
9000 
4788 

e11 
e12, e13, e16 
e15, e18 
e14, e17 
 

1764 
4428 
5688 
6552 

 
By these calculations .57600])1[S(Sz = We now 

compute the Szeged index of S[2]. To do this, we 
compute.  

 
Table 2. The summation of nu(e)nv(e) for the edges similar to e of S[2]. 

 
Types of Edges Sum Types of Edges Sum Types of Edges Sum 

e21 
e22, e23, e26 
e25, e28 
e24, e27 

8649 
20520 
26928 
31248 
 

e11 
e12, e13, e16 
e15, e18 
e14, e17 
 

21960 
32508 
24336 
25200 

e01 
e02 e03, e06 
e05, e08 
e04, e07 
e09 

27720 
54054 
38052 
38700 
20286 

 

By these calculations, Sz(S[2]) = 370152. We are now 
ready to calculate the step n of this nanostar. In Table 3, 
the values of nu(e)nv(e) for types of edges are computed.  

Set A1 = {en1, en2, en3, en4, en5, en6, en7, en8, e(n-1)1}, A2 = 
{e(n−i)2, e(n−i)3, e(n−i)6 

: 1≤i≤n}, A3 = {e(n−i)5, e(n−i)8 : 1 ≤ i ≤ 

n}, A4 = {e(n−i)4, e(n−i)7 : 1 ≤ i ≤ n} and A5 = {e(n−i)1 : 2 ≤ i ≤ 
n}. Define Si to be the summation of nu(e)nu(v) over all 
edges e = uv ∈ Ai. By calculations given in Table 1, one 
can see that: 

 
S1 = ((30 + 27n(n + 1)) × 1)×3(2n+2 – 1) + (((30 + 27n(n + 1)) – 2) × 3)(32 × 2n) + (((30 + 27n(n + 1)) – 5) × 6)(3 × 2n+1) + 
(((30 + 27n(n + 1)) – 6) × 7)(3 × 2n+1) + (((30 + 27n(n + 1)) – 9) × 10)(3 × 2n) = 3654 × 2n + 3969n × 2n + 3969n2 × 2n – 
81n – 81n2 – 90,  

423

n

1i
2

n2187n3483n41312295

)33))(18)1i(21())18)1i(20())1n(n2730(((S

+++=

×−+×−+−++= ∑
= . 

  
∑
=

×−+×−+−++=
n

1i
3 )23))(18)1i(24())18)1i(23())1n(n2730(((S  

                     = 423 n1458n2484n3240n1602 +++  

              
∑
=

×−+×−+−++=
n

1i
4 )23))(18)1i(25())18)1i(24())1n(n2730(((S  

                     = 423 n1458n2538n3402n1602 +++  

                S5 = ∑ ×−+×−+−++
−

=

1n

1i
)23))(18)1i(28())18)1i(27())1n(n2730(((  

                   )13))(18)1n(28())18)1n(27())1n(n2730((( ×−+×−+−+++  

              432 n1458n2430n1404n126630 ++++−=  
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Table 1. The summation of nu(e)nv(e) for the edges similar to e of S[n]. 

 
Types of Edges Summation of nu(e)nv(e) 

1)2n(
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8)1n(5)1n(
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)23))(18)1i(28())18)1i(27())1n(n2730(((
)23))(18)1i(25())18)1i(24())1n(n2730(((
)23))(18)1i(24())18)1i(23())1n(n2730(((
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11

1714

1815

131612

e
e,e
e,e

e,e,e

 

)23))(18)2n(28())18)2n(27())1n(n2730(((
)23))(18)2n(25())18)2n(24())1n(n2730(((
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01

0704

0805

030602

e
e,e
e,e

e,e,e

 

)13)(18)1n(28)(18)1n(27())1n(n2730((
)23)(18)1n(25)(18)1n(24())1n(n2730((
)23)(18)1n(24)(18)1n(23())1n(n2730((
)33)(18)1n(21)(18)1n(20())1n(n2730((

×−+−+−++
×−+−+−++
×−+−+−++
×−+−+−++

 

 

We are now ready to prove our first main result. 
 

Theorem 1. The Szeged index of S[n] is computed as 
follows:

 
nnn2432 365422n39692n3969n6561n13203n9828n5544720])n[S(Sz +++++++−= . 

 
Proof. By calculating S1, S2, S3, S4 and S5, one can see that Sz(S[n]) S1 + S2 + S3 + S4 + S5. So, by an straightforward 

calculation,  
 

=])n[S(Sz nnn2432 365422n39692n3969n6561n13203n9828n5544720 +++++++− . 
 
3. The second geometric-arithmetic index of  
     S[n] and S'[n] 
 
The aim of this section is to compute the second GA 

index of the Suzuki's Bi-branched Dendrimer S[n] and 
another dendrimer S'[n] depicted in Figs. 4, 5. Define: 

A1 = {en1, en2, en3, en4, en5, en6, en7, en8, 
e(n-1)1},  

A2 = {e(n−i)2, e(n−i)3, e(n−i)6 | 1 ≤ i ≤ n}, 
                   A3 = {e(n−i)5, e(n−i)8 | 1 ≤ i ≤ n}, 
                   A4 = {e(n−i)4, e(n−i)7 | 1 ≤ i ≤ n}, 
                   A5 = {e(n−i)1 | 2 ≤ i ≤ n}. 

We also define Si to be the summation of nu(e)nu(v) 
over all edges e = uv ∈ Ai. By our calculations given in 
Table 3, one can see that: 
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Theorem 2. The second GA index of S[n] is 
computed as follows: 

 
( ) ( )⎢⎣
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Proof. From the partition of E(S[n]) given above, one can 
see that 

GA2(S[n]) =  

 

We now apply MAPLE to simplify the equations.  
In the end of this paper, we consider a new type of 

dendrimers denoted by S'[n], Figs. 4 and 5. By a similar 
argument as in Theorem 2, one can prove the following 
theorem: 

 
Fig. 4. The Core K of S'[n]. 
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Fig. 5. The Molecular Graph of S'[n]. 
 
 
Theorem 3. The second GA index of S'[n] is 

computed as follows: 

( ) inn

0

1ii1n
2 2)12()12(2)12(3((

|)G(V|
6])n['S(GA −++ ×∑ −×−×−−×= . 
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